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The steady response of an infinite unbroken floating ice sheet to a moving load is
considered. It is assumed that the ice sheet is supported below by water of finite
uniform depth. For a concentrated line load, earlier studies based on the linearization
of the problem have shown that there are two ‘critical’ load speeds near which
the steady deflection is unbounded. These two speeds are the speed c0 of gravity
waves on shallow water and the minimum phase speed cmin. Since deflections cannot
become infinite as the load speed approaches a critical speed, Nevel (1970) suggested
nonlinear effects, dissipation or inhomogeneity of the ice, as possible explanations.
The present study is restricted to the effects of nonlinearity when the load speed is
close to cmin. A weakly nonlinear analysis, based on dynamical systems theory and
on normal forms, is performed. The difference between the critical speed cmin and
the load speed U is taken as the bifurcation parameter. The resulting normal form
reduces at leading order to a forced nonlinear Schrödinger equation, which can be
integrated exactly. It is shown that the water depth plays a role in the effects of
nonlinearity. For large enough water depths, ice deflections in the form of solitary
waves exist for all speeds up to (and including) cmin. For small enough water depths,
steady bounded deflections exist only for speeds up to U∗, with U∗ < cmin. The weakly
nonlinear results are validated by comparison with numerical results based on the full
governing equations. The model is validated by comparison with experimental results
in Antarctica (deep water) and in a lake in Japan (relatively shallow water). Finally,
nonlinear effects are compared with dissipation effects. Our main conclusion is that
nonlinear effects play a role in the response of a floating ice plate to a load moving
at a speed slightly smaller than cmin. In deep water, they are a possible explanation
for the persistence of bounded ice deflections for load speeds up to cmin. In shallow
water, there seems to be an apparent contradiction, since bounded ice deflections have
been observed for speeds up to cmin while the theoretical results predict bounded ice
deflection only for speeds up to U∗ < cmin. But in practice the value of U∗ is so close
to the value of cmin that it is difficult to distinguish between these two values.

1. Introduction
The study of the deformation of a floating ice sheet due to a load moving on top

of it has several applications, including the use of air-cushioned vehicles to break the
ice as described for example in the book by Ashton (1986), and the transformation
of bodies of water into roads and runways in winter in many areas as mentioned by
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Physical parameters McMurdo Sound Lake Saroma

Young’s modulus E 4.2× 109 N m−2 5.1× 108 N m−2

Poisson’s ratio ν 0.3 0.33
Ice thickness h 1.6 m 0.17 m
Flexural rigidity D 1.6× 109 Nm 2.35× 105 Nm
Water depth H 350 m 6.8 m
Load speed U 0 < U < 28 m s−1 0 < U < 14 m s−1

Shallow water velocity c0 59 m s−1 8.2 m s−1

Minimum wave velocity cmin 18 m s−1 6.09 m s−1

Wavenumber kmin 0.039 m−1 0.334 m−1

Wavenumber k∗ 0.129 m−1 0.6 m−1

Water density ρ 1024 kg m−3 1026 kg m−3

Ice density ρ′ 917 kg m−3

Table 1. Physical parameters for two sets of experiments: McMurdo Sound in Antarctica
(Squire et al. 1988) and Lake Saroma in Hokkaido, Japan (Takizawa 1985, 1987, 1988).

Milinazzo, Shinbrot & Evans (1995). The recent monograph by Squire et al. (1996) is
devoted to the rich topic of moving loads on ice plates. Many features of the response
of the ice sheet can be explained by modelling the ice as a thin elastic plate. This
classical model leads to the following flexural–gravity free wave dispersion relation:

c(k)2 =

(
g

k
+
Dk3

ρ

)
tanh(kH), where D =

Eh3

12(1− ν2)
. (1.1)

Here, k is the wavenumber, c the wave speed, g the acceleration due to gravity, ρ the
density of water, H the water depth, D the flexural rigidity of ice, h the ice thickness,
E denotes Young’s modulus and ν Poisson’s ratio for ice.

This model has been used successfully by Nevel (1970), Davys, Hosking & Sneyd
(1985), Schulkes & Sneyd (1988) and Milinazzo et al. (1995). However, as pointed out
by Strathdee, Robinson & Haines (1991), this model may be unsatisfactory in certain
conditions. The limits of the model will be discussed in § 2.

In this paper, two sets of experimental data will be used for reference: experiments in
McMurdo Sound in Antarctica (Squire et al. 1988) and in Lake Saroma in Hokkaido,
Japan (Takizawa 1985, 1987, 1988). Typical values of the physical parameters involved
in these experiments are summarized in table 1. Equation (1.1) is plotted in figure 1
for the conditions of Takizawa’s experiments in Lake Saroma as well as for the
conditions in McMurdo Sound.

A trivial property of the dispersion relation (1.1) is that it exhibits a minimum,
whatever the values of the physical parameters are. For McMurdo Sound, this
minimum is reached at k = 0.039 m−1 (i.e. a wavelength of 161 m). For Lake Saroma,
it is reached at k = 0.334 m−1 (i.e. a wavelength of 18.8 m). The corresponding
speeds and frequencies are c = 18 m s−1 and f = 0.11 Hz for McMurdo Sound and
c = 6.09 m s−1 and f = 0.32 Hz for Lake Saroma.

The presence of the minimum leads to a failure of linearized versions of the
problem. Assume a load moving at a constant speed U from right to left along the
ice sheet and linearize the equations in the frame of reference moving with the load.
For U < cmin the solution tends to a uniform flow with constant velocity U at infinity,
while for c0 > U > cmin, the solution of the linearized equations is characterized
by trains of waves in the far field (gravity waves downstream with wavenumber kg
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Figure 1. Phase velocity c versus wavenumber k for the parameters corresponding to the experiments
in: (a) Takizawa (1985), (b) Squire et al. (1988). Three regimes can be identified depending on the
load speed U: the single wave stage when U > c0 (the wavenumber of the single wave is larger
than k∗), the two-wave stage when cmin < U < c0 (the wavenumbers of the two waves are kg on the
gravity side and kf on the flexural side), and the ‘solitary’ wave stage when U < cmin. The values of
c0, cmin, k

∗ and kmin are given in table 1.

and flexural waves upstream with wavenumber kf – see figure 1). The amplitude of
the periodic waves being proportional to 1/(kf − kg), the linearization fails in the
neighbourhood of U = cmin. According to Squire et al. (1996), the linearized problem
was first solved by Kheysin (1963).

Since deflections clearly cannot become infinite as the load speed approaches cmin,
possible explanations are the effects of nonlinearity or dissipation. In this paper we
focus on the effects of nonlinearity. Note that a similar situation occurs for capillary–
gravity waves. For historical reasons the problem of capillary–gravity waves has
been studied more extensively than the problem of flexural–gravity waves and several
recent theoretical studies have been devoted to the effects of nonlinearity on capillary–
gravity waves travelling at speeds close to cmin (see for example Dias & Kharif 1999
for a review). Unfortunately, although some attempts have been made (see Longuet-
Higgins & Zhang 1997), experiments on capillary–gravity waves travelling at speeds
close to cmin are difficult to perform. For flexural–gravity waves, the situation is the
opposite. Experimental results are available but the nonlinear theory has not yet been
developed.

The paper is organized as follows. After formulating the problem in § 2, the problem
is linearized in § 3 and results on the linearized problem are recalled. In § 4, we add
nonlinear terms in order to study solutions with load speeds close to cmin. The
analysis, which is performed in a frame of reference moving with the load, is based on
dynamical systems theory and gives at leading order a forced nonlinear Schrödinger
(NLS) equation for the envelope A of the ice-sheet deflection,

Axx = q1µA− q2A|A|2 + εδ, (1.2)

where x is the horizontal coordinate, q1 and q2 are coefficients depending on the water
depth, µ is proportional to the difference cmin −U, ε is proportional the load-induced
pressure and δ is the Dirac delta function. In water of depth H , the ice-sheet deflection
ζ(x) is given by

ζ(x) =
tanh(kminH)

kmin

(Aeikminx + c.c.),
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Figure 2. Sketch of the flow. A load is moving at speed U from right to left on top of the ice sheet.

where c.c. stands for complex conjugate and A is a solution of equation (1.2). In § 5,
the forced NLS equation (1.2) is integrated. It is shown that the water depth plays
a crucial role in the effects of nonlinearity. For small enough water depths, steady
bounded deflections exist only for speeds up to U∗, with U∗ < cmin. For large enough
water depths, ice deflections in the form of solitary waves exist for all speeds up to
(and including) cmin. In particular, for great depth, solutions

ζ(x) = 2k−1
mins(x) cos(kminx),

with

s(x) = −
√

2µq1

|q2|
(

1

sinh(
√
µq1|x|+ α)

)
,

are found. The coefficients q1 and q2 are equal respectively to 0.42 and −0.24, while
α is the solution of the equation

cosh α

sinh2 α
=

√|q2|
2
√

2q1

(
ε

µ

)
.

Then a comparison is made between theory and experiments. Dissipative effects
are discussed. In the Appendix numerical results based on the full equations are
presented.

2. Formulation of the problem
A two-dimensional layer of a fluid of finite depth H beneath an ice sheet of

thickness h is considered. The sketch of the flow is shown in figure 2. The fluid is
assumed to be inviscid and incompressible and the flow irrotational. We introduce
Cartesian coordinates with the x∗-axis being the bottom of the ice sheet at rest and
the y∗-axis directed vertically upwards. The vertical ice-sheet deflection is denoted by
y∗ = ζ(x∗, t). The velocity components are denoted by u∗ (horizontal) and v∗ (vertical).

The equations of motion inside the fluid domain are

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0,

∂u∗

∂y∗
− ∂v∗

∂x∗
= 0 for (x∗, y∗) ∈ R× (−H, ζ(x∗, t)).

The boundary condition at the bottom is v∗ = 0 at y∗ = −H . Along the bottom
of the ice sheet y∗ = ζ(x∗, t), the kinematic condition ζt + u∗ζx∗ − v∗ = 0 and the
dynamic condition must be satisfied. The dynamic condition depends on the model
used to describe the ice. The modelling of ice is a complex topic and we refer to
Squire et al. (1996) for a review of various models. Here we assume that the terms
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involving ice thickness and damping can be neglected. There are several justifications
for this. Hosking, Sneyd & Waugh (1988) considered the effects of damping. They
used viscoelastic theory to describe the response of a floating ice sheet to a moving
vehicle. Takizawa (1987) also discussed briefly the effects of viscoelasticity on ice
deflection, by simply assuming that the damping force is proportional to the vertical
velocity (viscous damping). Hosking et al. adopted a two-parameter memory function
to describe the behaviour of the ice. They found that viscoelastic dissipation produces
an asymmetric quasi-static response when the vehicle speed U is less than cmin, and
a finite response at U = cmin. The damping is more important for the flexural wave
than for the gravity wave. Their main conclusion is that many experimental results on
ice waves can be explained by assuming a thin elastic plate but that certain features
are not satisfactorily described by the elastic theory, such as the observed lag of the
position of maximum depression immediately behind the source and the damping
of flexural waves. Strathdee et al. (1991) considered the effects of ice thickness and
discussed the circumstances in which the classical thin-plate theory can be recovered.
In the thin-plate approximation, waves of length comparable with or smaller than the
plate thickness are neglected. Strathdee et al. showed that the thin-plate approximation
is mathematically consistent when

(1− ν)ρgh
G
� 1,

where G is the shear modulus. For example, for the Antarctic experiments, this
coefficient is of the order of 10−6. Their calculations for stationary loads indicated
that thin-plate theory is accurate to within 5% for distances greater than twenty times
the ice thickness.

The main contribution of the present paper is to discuss nonlinear effects. But it is
not obvious how nonlinearity can be introduced. There are in fact three possibilities,
since nonlinear effects can be included in the plate equation as well as in the fluid
layer: nonlinear plate–nonlinear flow, linear plate–nonlinear flow, nonlinear plate–
linear flow. In a slightly different context (the study of the nonlinear stability of a
fluid-loaded elastic plate), Peake (2001) provides an illuminating discussion on these
three choices. Following his approach (see his equation (2.1)) as well as the approach
of Forbes (1986) (see his equation (2.11)) and Il’ichev (2000) (see his equation (4.1)),
who model the ice sheet as a Kirchhoff–Love plate, we include the full nonlinear
expression for the plate curvature in the elastic term and for the calculation of the
hydrodynamic pressure on the plate. Using the (nonlinear) Bernoulli equation, the
dynamic condition becomes

ρφ∗t + 1
2
ρ(u∗2 + v∗2) + ρgζ + D∂2

x∗x∗
ζx∗x∗

(1 + ζ2
x∗)

3/2
= −p(x∗, t), (2.1)

where φ∗ is the fluid velocity potential, and p(x∗, t) the pressure distribution exerted
by the load on the ice sheet. In (2.1), the tension of the pre-stressed state in the elastic
plate has been neglected. Taking it into account would lead to an additional term
similar to the surface tension term for capillary–gravity waves. This section would not
be complete without mentioning that the inertia of the thin plate has been neglected,
compared to the inertia of the moving fluid layer. The plate acceleration is measured
by the term ρ′kh/ρ. If it is much less than 1, the plate acceleration can be neglected
(see Squire et al. 1996). In both sets of experiments, this term is of the order of 5%
when k = kmin.
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3. Linearized problem
The concentrated load is assumed to be applied at time t = 0 and then to move from

right to left at a constant speed U. Therefore p(x∗, t) has the form Pδ(x∗ +Ut)H(t),
where P is a constant, δ the Dirac delta function andH the Heaviside step function.

The linearized problem was treated by Schulkes & Sneyd (1988). Some results are
recalled here. The linearized dynamic condition (2.1) at the interface is

ρφ∗t |y∗=0 + ρgζ + Dζx∗x∗x∗x∗ = −p(x∗, t), (3.1)

and the kinematic conditions are

φ∗y∗ |y∗=−H = 0, φ∗y∗ |y∗=0 = ζt. (3.2)

The solution of this problem can be put in the form

ζ(X, t) =
P

2πρ
(I1 + I2 − I0), (3.3)

with

I0 =

∫ ∞
−∞

eikX

ω1(k)ω2(k)
k tanh(kH)dk, I1 =

∫ ∞
−∞

ei(kX−ω1(k)t)

2c(k)ω1(k)
tanh(kH)dk,

I2 =

∫ ∞
−∞

ei(kX+ω2(k)t)

2c(k)ω2(k)
tanh(kH)dk, and X = x∗ +Ut.

The speed c(k) is given by equation (1.1), while ω1(k) and ω2(k) are defined as follows:

ω1(k) = k[c(k) +U], ω2(k) = k[c(k)−U].

As mentioned above, c(k) has a minimum denoted by cmin.
The steady part of the solution is given by ζs = −(P/2πρ)I0. Schulkes & Sneyd

(1988) showed that, for U < cmin, I1, I2 → 0 as t→ ∞, so the disturbance approaches
a steady state. The integral I0 can be computed using fast Fourier transforms. It can
be shown that the maximum ice deflection ζmax occurs at X = 0 and that it increases
with U. As U → cmin, it becomes infinite. In infinite depth, the expression for ζmax is
rather simple:

ζmax = − P

πρ

∫ ∞
0

dk

g + Dk4/ρ−U2k
. (3.4)

When U = 0, it is equal to −(P/8D)(4D/ρg)3/4. Figure 3 shows a plot of ζmax = ζs(0)
for the Antarctic experiments.

Figure 4 shows the steady ice displacement ζs for some load speeds U < cmin

(cmin = 6.09 m s−1) for the physical parameters corresponding to the experiments in
Lake Saroma. The linear results are in good agreement with the experimental results,
at least for the three speeds U = 2.2, 4.2 and 5.5 m s−1 (compare the profiles shown in
figure 4 with those in figure 6 of Takizawa (1987) or in figure 1 of Takizawa (1988)).
Since the experiments were performed with a rectangular load, our estimate of P ,
P = 320 N/m, is rather rough. Clearly, deflections cannot become infinite as the
load speed approaches cmin. Nevel (1970) suggested nonlinear effects, dissipation or
inhomogeneity of the ice, as possible explanations. In the next sections we consider
the effects of nonlinearity when the load speed is close to cmin.
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Figure 3. Plot of the maximum ice-sheet deflection (3.4) as a function of the load speed U (in
m s−1) for the physical parameters corresponding to the Antarctic experiments. Since P can only be
roughly estimated, the ice deflection has been divided by P . The units of ζmax/P are m2 N−1. The
plot is restricted to speed values between 0 and cmin (cmin ≈ 18 m s−1).

4. Dynamical system analysis
Since the load is assumed to move at a constant velocity U, the analysis is for a

frame moving from right to left at the velocity U. It is further assumed that the load
has been moving for a sufficient length of time that all transient motions of the ice–
water system have disappeared, and only the steady motion remains. Dimensionless
variables are introduced by taking U as unit velocity and L = (D/ρU2)1/3 as unit
length. At the critical speed cmin, L is of the order of 1.8 m for the experiments in
Japan and 16.9 m for the Antarctic experiments. The dimensionless parameters are
chosen to be

λ =
gH

U2
and f =

g

U2

(
D

ρU2

)1/3

.

A summary of the physical quantities as well as the dimensionless quantities is
provided in tables 2 and 3.

The problem in dimensionless form reads

φxx + φyy = 0, (x, y) ∈ R× [−λ/f, η(x)], (4.1)

with the boundary conditions

v = 0 at y = −λ/f, (4.2)

uηx − v = 0 at y = η(x), (4.3)

1
2
(u2 + v2 − 1) + fη + ∂2

xx

ηxx

(1 + η2
x)

3/2
+ εp0 = 0 at y = η(x). (4.4)

The term εp0(x) denotes the dimensionless pressure due to the moving load. The
function p0 is of compact support.

The change of coordinates introduced by Levi-Civita (1925) is used: the new
unknown is α+iβ as an analytic function of the complex potentialF = φ+iψ, where

eβ−iα ≡ u− iv =F′(x+ iy).
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Figure 4. The steady ice displacement ζ(x∗ + Ut) for the physical parameters corresponding to
Takizawa’s experiments (see table 1). The value of P has been estimated at P = 320 N m−1. The
values of the speed U are 0, 2.2, 4.2, 5.5, 5.8 m s−1 in (a)–(e) respectively. Recall that cmin = 6.09 m s−1.

The bottom of the ice sheet is given by ψ = 0 and the bottom of the water layer by
ψ = −λ/f. The function α represents the angle of the streamline with the horizontal,
while β represents the logarithm of the velocity modulus. In these new coordinates,
the system (4.1)–(4.4) can be rewritten as a dynamical system in φ. The deflection
η(φ) of the ice sheet can be expressed in terms of the new variables as

η =

∫ 0

−λ/f
(e−β cos α− 1)dψ or η =

λ

f
[e−β cos α− 1], (4.5)
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Symbol Physical quantity Dimension

t Time [T ]
U Load velocity [L][T ]−1

g Acceleration due to gravity [L][T ]−2

H Mean water depth [L]
h Ice sheet thickness [L]
D Flexural rigidity [M][L]2[T ]−2

E Young’s modulus [M][L]−1[T ]−2

k Wavenumber [L]−1

ρ Water density [M][L]−3

P Pressure load [M][T ]−2

L Unit length (D/ρU2)1/3 [L]
(x∗, y∗) Physical coordinates [L]
(u∗, v∗) Velocity components [L][T ]−1

ψ∗(x∗, y∗) Stream function [L]2[T ]−1

φ∗(x∗, y∗) Velocity potential [L]2[T ]−1

ζ(x∗, t) Deflection of the ice sheet [L]

Table 2. Physical parameters and their dimension

Symbol Definition Dimensionless quantity

ν Poisson’s ratio
κ kH Dimensionless wavenumber based on water depth
K kL Dimensionless wavenumber based on unit length
f gL/U2 Inverse square Froude number based on L
λ gH/U2 Inverse square Froude number based on H
x (x∗ +Ut)/L Dimensionless horizontal coordinate in moving frame
y y∗/L Dimensionless vertical coordinate
(u, v) (u∗, v∗)/U Dimensionless velocity components
η ζ/L Dimensionless deflection of the ice sheet
(φ, ψ) (φ∗, ψ∗)/UL Dimensionless potential and streamfunction
F φ+ iψ Dimensionless complex potential

Table 3. Dimensionless quantities

where [ ] denotes the mean value of enclosed term over the interval [−λ/f, 0]. Since
α and β are small, one can expand η as follows:

η =
λ

f
(−[β] + · · ·). (4.6)

Let α0(φ) = α(φ, 0), β0(φ) = β(φ, 0). Define

V = eβ0
∂α0

∂φ
, W =

(
eβ0

cos α0

)
∂V

∂φ
. (4.7)

Then one can replace the system (4.1)–(4.4) by the system

∂

∂φ


α0

V
W
α
β

 =


V e−β0

W e−β0 cos α0

cos α0(− sinh β0 − λe−β0 [e−β cos α− 1]− εp0e
−β0 )

βψ
−αψ

 (4.8)

with the boundary condition α(φ,−λ/f) = 0. The first and second equations in (4.8)
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are the definitions (4.7). The third equation is Bernoulli’s equation, the fourth and the
fifth are the Cauchy–Riemann equations. See Dias & Iooss (2003) for details.

The forcing term εp0 is temporarily set equal to zero. It will be reintroduced later
on. When ε = 0, the right-hand side of the system (4.8) anticommutes with R =
diag(−1, 1,−1,−1, 1). In other words, if the vector (α0(φ), V (φ),W (φ), α(φ, ψ), β(φ, ψ))
is a solution of the system (4.8), then (−α0(−φ), V (−φ),−W (−φ),−α(−φ, ψ), β(−φ, ψ))
is also a solution of the system.

Introducing the notation w = (α0, V ,W , α, β)T , system (4.8) can be viewed as a
‘spatial’ dynamical system

wφ = Lw + N(w), (4.9)

where L is the linearization about w = 0 of the right-hand side of the system and
N(w) is the nonlinear part of the system. The operator L acts on w as follows:

Lw =


V
W

−β0 + λ[β]
βψ
−αψ

 .

In order to find the spectrum of L, let us solve the linearized problem Lw = σw. It
is easy to show that the spectrum of L consists only of eigenvalues σ, which satisfy
the equation

(σ4 + f) sin

(
λ

f
σ

)
= σ cos

(
λ

f
σ

)
. (4.10)

When σ = ±i(f/λ)κ, equation (4.10) becomes the dispersion relation (1.1). The
reversibility of the system implies that if σ is an eigenvalue, then −σ, σ̄,−σ̄ are
eigenvalues as well. Moreover, σ = 0 is an eigenvalue if and only if λ = 1. The
behaviour of the eigenvalues close to the imaginary axis is shown in figure 5 in the
parameter space (f, λ).

From now on, the analysis is restricted to values of f and λ close to the curve Γ in
the (f, λ)-plane (the solid line in figure 5), defined by the existence of a pair of double
imaginary eigenvalues σ = ±i(f/λ)κ (the so-called 1:1 resonance). These imaginary
eigenvalues, which correspond to the minimum of the dispersion curve (1.1), that is
±i(f/λ)κ = ±ikminL, satisfy the relation (4.10), rewritten as

D(κ; λ, f) ≡
[
κ4

(
f

λ

)3

+ λ

]
tanh κ− κ = 0, (4.11)

as well as the equation

∂D

∂κ
= 4κ3

(
f

λ

)3

tanh κ+

[
κ4

(
f

λ

)3

+ λ

]
(1− tanh2 κ)− 1 = 0. (4.12)

The parametric form of Γ is given by

f =
3 tanh κ+ κ− κ tanh2 κ

4 tanh2 κ

(
tanh κ− κ+ κ tanh2 κ

4 tanh2 κ

)1/3

,

λ =
κ(3 tanh κ+ κ− κ tanh2 κ)

4 tanh2 κ
,

 (4.13)
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Figure 5. The solid line is the set of values of f and λ corresponding to the minimum of the
dispersion curve, given in parametric form by equation (4.13). The dashed line λ = 1 corresponds
to the speed of waves on shallow water

√
gH . The change in behaviour of the eigenvalues close

to the imaginary axis is indicated. The experimental values are given by λ = (ρgH4/D)1/4f3/4,

i.e. λ ≈ 3.09f3/4 for Takizawa’s experiments (dotted line) and λ ≈ 17.58f3/4 for the McMurdo
experiments (dashed-dotted line). The diamond represents the vanishing of the coefficient q2 given
by equation (4.30).

for κ ∈ (0,∞). Recall that κ is equal to kminH . The asymptotic behaviours of f and
λ are

f ∼ (6κ2)−1/3 + O(κ4/3), λ ∼ 1 + 1
6
κ2 + O(κ4), as κ→ 0

and

f ∼ 3

44/3
+ 21/3e−2κ, λ∼ 3

4
κ as κ→∞.

In infinite depth (κ → ∞), f ≈ 0.4725. For the physical parameters corresponding
to Takizawa’s experiments, κ = 2.27 and (4.13) gives (f, λ) = (0.485, 1.8). For the
McMurdo experiments, κ = 13.65 and (4.13) gives f ≈ 0.48 and λ ≈ 10.

Since we look for solutions with (f, λ) close to the curve Γ , we define a small
parameter

µ = (f∗/λ∗)(λ− λ∗), (4.14)

where the point (f∗, λ∗) belongs to the curve Γ given by (4.13). The parameter µ
is proportional to cmin − U. In the remainder of this section, we will drop the stars
whenever there is no possible confusion. We will also use the notation K = κf/λ.

The double eigenvalues ±iK are non-semi-simple. The eigenvectors ϕ+
0 (resp. ϕ−0 )

and generalized eigenvectors ϕ+
1 (resp. ϕ−1 ), corresponding to the eigenvalue +iK

(resp. −iK), are

ϕ+
0 =

1

cosh κ


i sinh κ
−K sinh κ
−iK2 sinh κ

i sinh(Kψ + κ)
− cosh(Kψ + κ)

 , ϕ−0 = ϕ+
0 , (4.15)
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ϕ+
1 =

1

cosh κ


0

i sinh κ
−2K sinh κ

ψ cosh(Kψ + κ)− (λ/f) sinh(Kψ)/ sinh κ
i[ψ sinh(Kψ + κ)− (λ/f) cosh(Kψ)/ sinh κ]

 , ϕ−1 = ϕ+
1 . (4.16)

Let us now reintroduce the forcing term εp0. The method described by Il’ichev
(2000) for the case ε = 0, which is based on the centre manifold reduction theorem,
is extended to the case ε 6= 0. This means that all solutions of (4.9), staying small and
bounded for φ ∈ (−∞,+∞), can be written in the form

w = A(φ)ϕ+
0 + B(φ)ϕ+

1 + Ā(φ)ϕ−0 + B̄(φ)ϕ−1 + Φ(µ, ε;A,B, Ā, B̄), (4.17)

where Φ(0, 0;A,B, Ā, B̄) is a nonlinear function containing the higher-order terms in
A,B, Ā, B̄.

A powerful method for finding A and B consists of using normal form theory.
Combining the normal form theory described by Iooss & Adelmeyer (1992) for ε = 0
(1:1 resonance normal form with reversibility) and the method used by Kirchgässner
(1988) and Mielke (1986) for the case ε 6= 0, Părău & Dias (2000) showed that the
reduced ordinary differential equations resulting from the centre manifold reduction
can be put in the form

Aφ = iKA+ B + iAP (µ; |A|2, 1
2
i(AB̄ − ĀB))− iεp0C0C1 + · · · , (4.18)

Bφ = iKB + iBP (µ; |A|2, 1
2
i(AB̄ − ĀB)) + AQ(µ; |A|2, 1

2
i(AB̄ − ĀB)) + εp0C0 + · · · ,

(4.19)

where P and Q are polynomials defined by

P (µ; |A|2, 1
2
i(AB̄ − ĀB)) = p1µ+ p2|A|2 + p3

1
2
i(AB̄ − ĀB) + · · · ,

Q(µ; |A|2, 1
2
i(AB̄ − ĀB)) = q1µ− q2|A|2 + q3

1
2
i(AB̄ − ĀB) + · · · .

For our purpose, only the coefficients q1, q2 and the constant C0 are needed. In order
to compute them, the forcing term εp0 is again set equal to zero. We first compute the
leading coefficient q1. It is easy to find, since it is directly related to the eigenvalues
of the linearization of (4.18)–(4.19) about (0,0):

σ = i

(
f∗

λ∗
κ+ p1µ

)
±√q1

√
µ+ O(µ3/2).

If we substitute this expression into (4.10) with λ = λ∗ + (λ∗/f∗)µ and expand in
powers of µ, one finds that

q1 = 21/3 (sinh κ cosh κ− κ)1/3 sinh7/3 κ

3 cosh κ sinh2 κ− 2κ2 cosh κ− κ sinh κ
.

It can be checked that q1 > 0, for all κ ∈ R+. Its asymptotic behaviour is given by

q1 ∼ 1

4

(
6

κ

)2/3

as κ→ 0 and q1 → 21/3

3
≈ 0.42 as κ→∞.

Values of q1 for the experiments in Japan and the Antarctic are given in table 4.
Next we compute the coefficient q2 by using the method described by Dias & Iooss

(1993). Let us set µ = 0 in the following computations since this does not change
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q1 q2 C0 A Depth Critical depth
(m) (m)

Antarctic experiments 0.42 −0.15 0.29 −0.27 350 152
Experiments in Japan 0.49 1.05 0.29 −0.16 6.8 16.8

Table 4. Numerical values of various coefficients appearing in the weakly nonlinear analysis. These
coefficients depend on the water depth. The values which are shown correspond to the water depth
in the experiments. If the water depth were allowed to vary, the coefficient q2 would vanish at the
critical depth shown.

anything. The nonlinear part of equation (4.9), N(w), is rewritten as

N(w) = N2(w,w) + N3(w,w,w) + · · · , (4.20)

where N2 denotes the quadratic terms

N2(w,w) =


−Vβ0

−Wβ0

λ( 1
2
[α2]− 1

2
[β2]− β0[β])
0
0

 ,

and N3 denotes the cubic terms

N3(w,w,w) =


1
2
Vβ2

0

1
2
W (β2

0 − α2
0)

1
2
λ(−α2

0[β] + β2
0 [β] + β0[β

2]−β0[α
2] + 1

3
[β3]−[βα2])+ 1

2
β0α

2
0− 1

6
β3

0

0
0

.
The dots in (4.20) denote higher-order terms. In addition to (4.9), another expression
for wφ can be obtained by differentiating (4.17) with respect to φ and setting µ = 0:

wφ = Aφϕ
+
0 + Bφϕ

+
1 + Āφϕ

−
0 + B̄φϕ

−
1 + Φφ(0, 0;A,B, Ā, B̄). (4.21)

Next we give the first terms in the expansion of Φ(0, 0;A,B, Ā, B̄):

Φ = (A2Φ2000 + c.c.) + |A|2Φ1100 + (ABΦ1010 + c.c.) + (ĀBΦ0110 + c.c.)

+(A3Φ3000 + c.c.) + |A|2(AΦ2100 + c.c.) + · · · ,
where c.c. stands for complex conjugate. If Aφ and Bφ are replaced in (4.21) by their
expressions from (4.18) and (4.19), we can equate the powers of A, B and so on in
(4.9) and (4.21), which leads to the following system of equations:

Lϕ+
0 = iKϕ+

0 , (4.22)

Lϕ+
1 = iKϕ+

1 + ϕ+
0 , (4.23)

LΦ2000 + N2(ϕ
+
0 ,ϕ

+
0 ) = 2iKΦ2000, (4.24)

LΦ1100 + 2N2(ϕ
+
0 ,ϕ

−
0 ) = 0, (4.25)

LΦ2100 +2N2(ϕ
+
0 , Φ1100)

+2N2(ϕ
−
0 , Φ2000) + 3N3(ϕ

+
0 ,ϕ

+
0 ,ϕ

−
0 ) = iKΦ2100 + ip2ϕ

+
0 − q2ϕ

+
1 . (4.26)
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The adjoint operator L∗ of L, which is such that

〈Lw,w∗〉 = 〈w,L∗w∗〉, w ∈ D(L), w∗ = (V ∗,W ∗, α∗0, α
∗, β∗)T ∈ D(L∗),

is introduced. The notation 〈·, ·〉 denotes the scalar product defined as

〈w,w∗〉 = α0V ∗ + VW ∗ +Wα∗0 +

∫ 0

−λ/f
(αα∗ + ββ∗)dψ.

The domains D(L) and D(L∗) are such that they contain the boundary conditions

{α(·,−λ/f) = 0, α(·, 0) = α0} for D(L),

and

{α∗(·,−λ/f) = 0, α∗(·, 0) = α∗0} for D(L∗).
The operator L∗ acts on w∗ as

L∗w∗ =


−β∗(·, 0)
V ∗
W ∗
β∗ψ

fα∗(·, 0)− α∗ψ

 .

The eigenvectors ψ1
+ and generalized eigenvectors ψ0

+ for the adjoint operator L∗
satisfy

L∗ψ1
+ = −iKψ1

+, L∗ψ0
+ = −iKψ0

+ + ψ1
+,

and can be chosen so that

〈ϕ+
0 ,ψ

1
+〉 = 0, 〈ϕ+

0 ,ψ
0
+〉 = 1, 〈ϕ+

1 ,ψ
1
+〉 = 1, 〈ϕ+

1 ,ψ
0
+〉 = 0.

One finds that

ψ1
+ = C0


K2

iK
−1

− sinh(Kψ + κ)/ sinh κ
i[cosh(Kψ + κ)/ sinh κ− λ/κ]

 ,

where

C0 =

(
f

λ

)2
2κ2 sinh2 κ cosh κ

3 sinh2 κ cosh κ− κ sinh κ− 2κ2 cosh κ
. (4.27)

Since ψ0
+ is not needed, we do not provide its expression. The constant C1 in (4.18)

appears in ψ0
+ but is not needed either. The asymptotic behaviour of C0 is

C0 ∼ 61/3

4
κ−4/3 + O(κ2/3) as κ→ 0, C0 ∼ 41/3

6
as κ→∞.

C0 is positive for all κ. Values of C0 for the experiments in Japan and the Antarctic
are given in table 4.

With our choice of eigenvectors and generalized eigenvectors, the projection Π of
w on the invariant subspace spanned by ϕ+

0 ,ϕ
−
0 ,ϕ

+
1 ,ϕ

−
1 is given by

Π(w) = 〈w,ψ0
+〉ϕ+

0 + 〈w,ψ1
+〉ϕ+

1 + 〈w,ψ0
−〉ϕ−0 + 〈w,ψ1

−〉ϕ−1 .
The coefficient q2 is obtained by taking the scalar product of (4.26) with ψ1

+:

q2 = −〈2N2(ϕ
+
0 , Φ1100) + 2N2(ϕ

−
0 , Φ2000) + 3N3(ϕ

+
0 ,ϕ

+
0 ,ϕ

−
0 ), ψ1

+〉. (4.28)



Nonlinear effects in the response of a floating ice plate to a moving load 295

All the symbolic computations needed to find Φ1100, Φ2000, q2 and the nonlinear terms
N2(w,w), N3(w,w,w) are performed using the software maple. The expressions for
Φ1100 and Φ2000, which are obtained from (4.25) and (4.24), read

Φ1100 =


0

2K tanh κ
0
0(

λ

λ− 1

)
sinh 2κ+ κ

κ cosh2 κ

 , Φ2000 =


−iA

K(2A+ tanh κ)

iK2(4A+ 3 tanh κ)

−iA sinh 2(Kψ + κ)/ sinh 2κ

A cosh 2(Kψ + κ)/ sinh 2κ

 ,

where

A = 3 sinh κ

(
5κ− sinh κ cosh κ

−15κ cosh κ+ 15 sinh κ+ 11 sinh3 κ

)
. (4.29)

All values of λ are taken along the curve (4.13). The asymptotic behaviour of A is

A→ − 3
11

as κ →∞, A ∼ 2

κ
− 5

3
κ+ O(κ2) as κ→ 0.

The values of A corresponding to the two sets of experiments are given in table 4.
The expression (4.28) for q2 is

q2(κ) =
C0

8κ2(λ− 1) sinh2 κ cosh3 κ

×{12A(λ− 1)κ cosh3 κ(κ2 − κ sinh κ cosh κ+ λ sinh2 κ)

−κ3 sinh κ[(11 sinh2 κ+ 8)− λ(11 sinh2 κ+ 12)]

−κ2 sinh2 κ cosh κ[λ(11 sinh2 κ− 8)− (11 sinh2 κ+ 4)]

+4κ sinh3 κ(3 + sinh2 κ)λ(λ+ 1) + 32λ2 sinh4 κ cosh κ}. (4.30)

The coefficient q2(κ) is plotted in figure 6. It is a monotonically decreasing function
of κ, with the following asymptotic behaviour:

q2 ∼ 57
4

61/3κ−10/3 + O(κ−4/3) as κ→ 0, q2 → − 79
528

41/3 ≈ −0.2375 as κ→∞.
It vanishes for κ ≈ 5.79 (the corresponding values of λ and f given by (4.13) are 4.34
and 0.473 as shown in figure 5). The values of q2 corresponding to the two sets of
experiments are given in table 4 and shown in figure 6. One can link the vanishing
of q2 with a critical fluid depth. Below that critical depth, q2 is negative; above, it is
positive. The critical depths for both sets of experiments are indicated in table 4.

Now that we have computed the coefficients q1 and q2, we go back to the system
(4.18)–(4.19). Let Ã = Ae−iKφ, B̃ = Be−iKφ. At leading order, the system (4.18)–(4.19)
becomes

Ãφ = B̃ + · · · , (4.31)

B̃φ = Ã(q1µ− q2|Ã|2) + εe−iKφp0C0 + · · · . (4.32)

Since φx = u = eβ cos α ≈ 1 at leading order, the potential φ can be replaced by
x, so that our problem is finally reduced to the forced nonlinear Schrödinger (NLS)
equation:

Ãxx = q1µÃ− q2Ã|Ã|2 + ε̃δ, (4.33)

where

ε̃ = C0ε

∫ ∞
−∞
p0(x)dx
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Figure 6. Plot of the coefficient q2 given by (4.30) versus κ. Large values of κ correspond to
deep water. Small values of κ correspond to shallow water. The circle corresponds to Takizawa’s
experiments, the square to the Antarctic experiments while the dot corresponds to the vanishing
of q2.

(see equation (4.27) for the expression for C0). If the load-induced pressure has the
same expression as in § 3, then ε̃ = C0 P/ρU

2. For positive P , ε̃ is positive. More
details on the derivation of the forced NLS equation can be found in Părău & Dias
(2000). The next section is devoted to solutions of (4.33). Once solutions for Ã have
been found, one can compute A = ÃeiKx and B = Ãxe

iKx. At leading order, the
solution w of (4.9) is given by w = Aϕ+

0 + Āϕ−0 , that is
α0

V
W
α
β

 =
A

cosh κ


i sinh κ
−K sinh κ
−iK2 sinh κ

i sinh(Kψ + κ)
− cosh(Kψ + κ)

+
Ā

cosh κ


−i sinh κ
−K sinh κ
iK2 sinh κ

−i sinh(Kψ + κ)
− cosh(Kψ + κ)

 . (4.34)

Using (4.6), it follows that the ice-sheet deflection reads

η = −λ
f

[β] =
tanh κ

K
(A+ Ā) =

tanh κ

K
(ÃeiKx + c.c.). (4.35)

5. Solutions of the forced nonlinear Schrödinger equation
In order to study the solutions of the forced NLS equation (4.33), it is convenient

to study first the solutions without forcing, i.e. with ε̃ = 0 in (4.33). Let us write

Ã(x) = s(x)eiθ(x),

separate real and imaginary parts and integrate the equation. After some calculations,
one finds that s, or rather u = s2, and θ satisfy the equations

1
4
u2
x = q1µu

2 − 1
2
q2u

3 − I2 +Hu, uθx = I. (5.1)

The solutions are completely characterized by the two first integrals I and H . These
two integrals are related to the energy flux and flow force. Since only speeds U less
than cmin are considered, the parameter µ introduced in (4.14) is always positive. Then
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Figure 7. Plot of the ice-sheet deflection η(x) (see equation (5.3)) for two solitary waves of
depression. Except for the pressure load, which is absent, the parameters are the same as in
Takizawa’s experiments. (a) U = 5.8 m s−1, i.e. f = 0.552 and λ = 1.98. Consequently, κ = 2.19 and
µ = 0.065. The unit length is L = 1.9 m. (b) U = 6 m s−1, i.e. f = 0.504 and λ = 1.85. Consequently,
κ = 2.25 and µ = 0.019. The unit length is L = 1.85 m.

there are two cases to consider. If q2 < 0, there are no bounded solutions. If q2 > 0,
there are periodic solutions (of finite amplitude only), quasi-periodic solutions and
solitary waves, tending to zero at infinity (see Iooss & Adelmeyer 1992). For these
solitary waves, the expression for s is

s(x) = ±
√

2µq1

q2

(
1

cosh(
√
µq1x)

)
, (5.2)

and θ is a constant. The corresponding ice-sheet deflection (4.35) is

η = ±2 tanh κ

K

√
2µq1

q2

cos(Kx)

cosh(
√
µq1x)

. (5.3)

In physical variables, this expression becomes

ζ(x∗, t) = ±2 tanh(kH)

k

√
2µq1

q2

cos[k(x∗ +Ut)]

cosh[
√
µq1(x∗ +Ut)/L]

. (5.4)

Two solitary waves of depression have been plotted in figure 7 (at leading order, the
wave of elevation is just the mirror image of the depression wave). The parameters
H and D are those of the experiments in Japan. The amplitudes |ζ(0)| of the waves
are approximately 1.4 m and 76 cm. They are almost two orders of magnitude larger
than the amplitude of the waves shown in figure 4. These waves are not realistic
and definitely violate the assumptions made in the present theory. But recall that the
comparison is misleading at this stage because the wave shape (5.4) was obtained
without forcing.

Now let us reintroduce the forcing (̃ε 6= 0). Although the solution of the linearized
problem becomes singular when µ→ 0 due to the 1:1 resonance, the finite-amplitude
response close to resonant conditions is bounded. In that case, one can obtain solitary
wave type profiles even if q2 < 0.

We look for solutions of (4.33) which are continuous and bounded for x ∈ R,
satisfy Ãxx = q1µÃ − q2Ã|Ã|2 for x 6= 0, and Ãx(0+) − Ãx(0−) = ε̃. Moreover we
restrict the analysis to solitary waves tending to zero at infinity.
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The analysis is the same as before, except that now equation (5.1) must be written
separately for x < 0 and for x > 0:

1
4
u2
x = q1µu

2 − 1
2
q2u

3 − I2
1 +H1u, uθx = I1, x < 0,

1
4
u2
x = q1µu

2 − 1
2
q2u

3 − I2
2 +H2u, uθx = I2, x > 0.

The constants I1, I2, H1, H2 are chosen to be zero in order to obtain solitary waves
tending to zero at infinity. Then necessarily sin(θ(0)) = 0 and sx(0+) = −sx(0−) = ε̃/2.

For the experiments in Japan, q1 > 0 and q2 > 0 (see table 4). Solitary waves can
only be obtained for positive µ, i.e. U < cmin. Let

µ∗ =
1

q1

√
q2

2
ε̃.

For Takizawa’s experiments, ε̃ ≈ 0.0026, so that µ∗ ≈ 0.004. Consequently U∗ =
6.06 m s−1. There are four solitary waves for µ > µ∗, two of elevation and the other
two of depression. One elevation wave and one depression wave are perturbations of
the waves (5.3) found without the forcing. The other depression wave is a perturbation
of the linearized solution found in § 3. The other elevation wave does not relate to
previous solutions. If µ = µ∗, there are only two solutions, one being an elevation
solitary wave and the other one a depression solitary wave. For 0 6 µ < µ∗, there are
no solitary waves.

In the general case, the solutions can be written as

s(x) = ±
√

2µq1

q2

(
1

cosh(
√
µq1|x| ∓ α1/2)

)
, (5.5)

where α1 and α2 are the solutions of

sinh α

cosh2 α
=

√
q2

2
√

2q1

(
ε̃

µ

)
.

The corresponding wave profiles (4.35) are given by

η(x) = 2K−1 tanh κs(x) cos(Kx). (5.6)

The four solutions (5.5) as well as the corresponding profiles (5.6) are shown in figure 8.
Clearly the only physically acceptable solution is the small-amplitude depression wave.
It is interesting to note that recent stability results of Calvo & Akylas (2002) seem to
indicate that the small-amplitude depression wave is the only one which is stable.

For the Antarctic experiments, q1 > 0 and q2 < 0 (see table 4). A unique solitary
wave can be found for all positive values of µ, as opposed to the case without forcing,
where no solitary waves could be found. It is a depression solitary wave, which can
be viewed as a perturbation of the linearized solution of § 3. The solution can be
expressed as

s(x) = −
√

2µq1

|q2|
(

1

sinh(
√
µq1|x|+ α)

)
,

where α is the single positive root of the equation

cosh α

sinh2 α
=

√|q2|
2
√

2q1

(
ε̃

µ

)
.

The corresponding wave profile (4.35) is again given by (5.6) and is plotted in figure 9.
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Figure 8. Solutions of the forced NLS equation in relatively shallow water (q2 > 0). This case
corresponds to the experiments in Japan. The parameters are ε̃ = 0.003, µ = 0.02 (i.e. U ≈ 6 m s−1),
κ = 2.27. (a) The profiles s(x) given by (5.5). (b) The corresponding wave profiles η(x) for the
elevation waves. (c) The corresponding wave profiles η(x) for the depression waves.
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Figure 9. Solutions of the forced NLS equation in deep water (q2 > 0). This case corresponds to
the Antarctic experiments. The parameters are ε̃ = 0.003, µ = 0.02, κ = ∞ (infinite depth). Plot of
the profile s(x) (a) and of the corresponding wave profile η(x) (b).

For µ = 0, there is also a depression solitary wave, but it decays algebraically
at infinity, as opposed to the previous cases where the solutions were decaying
exponentially:

s(x) = − 1

( 1
2
|q2|)1/2|x|+ (̃ε−1

√
2|q2|)1/2

.
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Figure 10. The amplitude |η(0)| as a function of µ for q2 > 0 (a) and q2 < 0 (b). The value of κ is
2.27 for q2 > 0, as in figure 8. The value of κ is infinity for q2 < 0, as in figure 9. Various solutions
are shown: the solution of the linearized problem (· − · − ·) with ε̃ 6= 0 (see § 3), the analytical
solution with ε̃ = 0 (−−) and the solutions of the forced nonlinear Schrödinger equation (4.33)
with ε̃ 6= 0 (solid line). When q2 < 0, |η(0)| remains finite in the limit µ→ 0. When ε̃ 6= 0, its value
is 0.003 in the plots.

Figure 10 shows the amplitude at the origin of the various linear and nonlinear
analytical solutions which have been computed in this paper. From figure 10, one
may conclude the following. In all water depths, the linearized theory is sufficient to
describe the observed phenomena, i.e. the existence of a solitary wave of depression,
for speeds not too close to cmin (say µ > 0.05). For 0 6 µ < 0.05, the weakly nonlinear
theory predicts the fate of this solitary wave of depression. In large water depth
(q2 < 0), it persists all the way to cmin and its amplitude remains realistic. For the
Antarctic experiments, we do not have direct access to the ice-sheet deflection but
weakly nonlinear theory and experiments agree qualitatively. In small water depth,
the depression wave ceases to exist at U∗ < cmin. In the experiments in Japan, in
relatively shallow water, the solitary wave of depression seems to have been observed
all the way to U = cmin, in apparent contradiction with the present results. However,
the theoretical value of U∗ = 6.06 m s−1 is so close to U = cmin = 6.09 m s−1 that one
has to be cautious in interpreting the experimental as well as the theoretical results.
The next section is devoted to a more complete discussion.

6. Discussion
Comparing theory and experiments is always a difficult task. In the case of ice-

sheet deflections induced by a moving load, this task is particularly difficult because
many effects come into play. First, the modelling of ice is not an easy task. In our
model, the ice acceleration term has been neglected. This can be justified provided
the wavelength of the surface displacement is much larger than the ice thickness.
Since the water motion penetrates to a depth comparable with one wavelength,
the inertia of the thin ice plate will thus be small compared with that of the
moving-water layer. The ice thickness has been neglected in our model, based on
the justification given by Strathdee et al. (1991): thin-plate theory is accurate to
within 5% for distances greater than twenty times the ice thickness. Another effect
which may play a role in the dynamics of waves in the ice layer is the com-
pressibility of water as shown by Brevdo (2001). Another source of error in the
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comparison between theory and experiments is the modelling of the load-induced
pressure. In the experiments, the load is clearly two-dimensional, while our model
is one-dimensional. Dissipative forces may also play a role in the experiments. In
the literature so far, only the effect of damping has been used to explain why the
deflection of ice sheets does not go to infinity as U approaches cmin. Takizawa
(1987) and Hosking et al. (1988) studied the effect of viscosity on the linearized
problem and concluded that the classical model for the steady-state behaviour
fails at U = cmin owing to its neglect of dissipative effects. When physical damp-
ing is included in the calculations, the integrals do not diverge near the critical
speed.

Putting these comments aside, let us now concentrate on the results of this paper.
If nonlinear effects are important near cmin, then the behaviour depends on water
depth, if we keep the other physical parameters constant. For Takizawa’s experiments,
the water is relatively shallow. Theoretically, we found a transition region for speeds
slightly less than cmin, where no steady solutions in the form of solitary waves exist.
This transition region is different from the transition regions that Takizawa (1985)
introduces: the latter are based on qualitative behaviour of the deflection of the ice
sheet for speeds less than cmin. We believe that the transitional speed U∗ being so
close to cmin explains why solitary waves have been observed all the way to the critical
speed cmin. In shallower water, one may be able to observe a clear transition region,
i.e. a region without steady solutions. In infinite depth, there is no transition region
and steady solutions exist all the way to cmin. Our conclusion is that the solutions are
described adequately by the forced nonlinear Schrödinger equation when the speed
U is close to cmin, while for U � cmin the linearized equations are adequate.

Previously it was established that dissipative effects are the main explanation for
making the ice deflection finite near cmin. In the present paper, we have shown that
nonlinear effects are another possible explanation. It is fair to say that most probably
nonlinear effects compete with dissipative effects in order to make the ice deflection
finite as U tends to cmin. However, our weakly nonlinear theory cannot yet explain the
observed lag of the position of maximum depression immediately behind the load. It
is possible to combine nonlinearity and damping in a nonlinear Schrödinger equation
where damping is introduced artificially. This technique was used by Barnard, Mahony
& Pritchard (1977) in their study of surface waves near a cut-off frequency.

The focus of the present paper has been the critical speed cmin. But there is another
critical speed, the speed of gravity waves on shallow water c0, at which nonlinear
effects probably play a role. This is left for a future study.

F. Dias acknowledges support of Délégation Générale pour l’Armement, under the
contract ERS 981135. E. Părău acknowledges support of Direction de la Recherche
(Ministère de l’Education Nationale, de la Recherche et de la Technologie). Computa-
tions presented in this work were performed on the IDRIS CRAY C90 supercomputer,
under CNRS funding.

Appendix. Numerical results
The main purpose of this Appendix is to show that the weakly nonlinear theory

developed in § 4 is valid for cases of physical interest. Solitary wave solutions of
the full Euler equations (4.1)–(4.4) without forcing are computed numerically and
compared with the weakly nonlinear solutions. Equations (4.1)–(4.4) are rewritten in
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terms of the velocity potential:

φxx + φyy = 0, (x, y) ∈ R× [−λ/f, η(x)], (A 1)

φy = 0 at y = −λ/f, (A 2)

φxηx − φy = 0 at y = η(x), (A 3)

1
2
(φ2

x + φ2
y − 1) + fη + ∂2

xx

ηxx

(1 + η2
x)

3/2
= 0 at y = η(x). (A 4)

Again the independent variable is the complex potential F(z) = φ + iψ, where
z = x+ iy. As before, we choose ψ = 0 along the bottom of the ice sheet. Moreover,
φ is chosen to be 0 at x = 0. Then

φx − iφy =
dF
dz

=
1

x′(φ) + iη′(φ)
,

where x′(φ) and η′(φ) are the values of dx/dφ and dy/dφ evaluated on the bottom
of the ice sheet ψ = 0. Bernoulli’s equation becomes

1

2

(
1

x′2 + η′2
− 1

)
+ fη +

S

x′3(x′2 + η′2)7/2
= 0, (A 5)

where

S = −x′η′5x(iv) − 3x′′2η′4η′′ + x′′η′5x′′′ − 2x′3η′3x(iv) − 4x′5η′′x′′′ + 2x′4η(iv)η′2

+x′2η(iv)η′4 + 15η′′x′4x′′2 + 12η′′3x′2η′2 − 15η′x′′3x′3 + x′6η(iv) − 6η′′′x′5x′′

−x′5η′x(iv) − 3x′4η′′3 − 33η′2x′′2x′2η′′ − 9η′′′x′4η′η′′ − 3η′′′x′3η′2x′′

−9η′′′x′2η′3η′′ + 10η′x′′′x′4x′′ + η′2x′′′x′3η′′ + 11η′3x′′′x′2x′′ + 36η′′2x′3x′′η′

+5x′η′4x′′′η′′ − 9x′η′3x′′η′′2 + 3x′η′′′x′′η′4.

By using Cauchy’s formula in order to calculate x′(φ) + iη′(φ) − 1 for a point φ
along the bottom of the ice sheet, one obtains the integro-differential equation

x′(φ)− 1 = − 1

π

∫ ∞
0

η′(s)
(

1

s− φ +
1

s+ φ

)
ds

+
f

π

∫ ∞
0

f(φ− s)η′(s) + 2λ(x′(s)− 1)

f2(s− φ)2 + 4λ2
ds

+
f

π

∫ ∞
0

−f(φ+ s)η′(s) + 2λ(x′(s)− 1)

f2(s+ φ)2 + 4λ2
ds. (A 6)

Equations (A 5) and (A 6) define a system for the unknown functions x(φ) and η(φ)
which is solved by the method described in Dias, Menasce & Vanden-Broeck (1996).
The system is discretized by choosing N equally-spaced point φi = i∆φ for the
potential. The spacing ∆φ is a crucial parameter for the accuracy of the numerical
computations. The system is then solved by Newton’s method for given values of f
and λ.

The number of points used for solving these equations was 800 in most cases and the
length of the discretization interval was ∆φ = 0.05. As the velocity approaches cmin,
the oscillations become more visible as their decay becomes slower. We restricted
our numerical computations to the branches predicted by the dynamical system
analysis of § 4. A wave of depression as well as a wave of elevation are shown in
figure 11. The values of D and H are those of Takizawa’s experiments. The analytical
profiles are shown for comparison. The effect of truncation can be seen, especially
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Figure 11. Profiles η(x) of an elevation solitary wave (a) with f = 0.4959, λ = 1.838, µ = 0.018 and
of a depression solitary wave (b) with f = 0.5215, λ = 1.933, µ = 0.036. For these two waves, the
ratio f/λ is equal to 0.27. The solid line is the analytical solution. The dashed line is the numerical
solution.

for the elevation wave. Since there is no uniqueness we observed that the schema is
sensitive to the initial guess. As in the problem of capillary–gravity waves, we expect a
plethora of solutions. The branches predicted by the dynamical system analysis of § 4
are modulated wave packets whose envelopes are symmetric and decay exponentially
to zero at infinity. In the middle, one wave has a central crest (elevation wave),
while the other wave has a central trough (depression wave). As shown in § 4, the
normal form (4.18)–(4.19) yields the NLS equation to leading order. And the NLS
equation admits two symmetric envelope-soliton solutions. But one can also construct
small-amplitude asymmetric solitary waves, by translating the crests of a symmetric
solitary wave relative to its wave envelope. The problem is that such asymmetric
waves do not persist when considering the full system. Exponentially small terms
come into play. Shifting the carrier oscillations relative to the envelope leads to the
appearance of growing oscillations of exponentially small amplitude on one side of
the wavepacket. However, due to nonlinearity, this growing tail evolves into a new
wavepacket and it can be shown that, for certain values of the phase of the carrier
oscillations, the whole disturbance terminates, resulting in a solitary wave with two
wavepackets. Otherwise, a third wavepacket is generated and the process continues.
The main result is that there exists a countable infinity of symmetric and asymmetric
multibump solutions. But, unlike the solitary waves obtained in § 5, which bifurcate
from the rest state, each of these multibump solitary waves bifurcates at a certain
finite amplitude.

Although it is easy to add a pressure disturbance to equation (A 4), as was done
by Vanden-Broeck & Dias (1992) for capillary–gravity waves, we did not do it for
the following reason: we have showed that even for relatively small values of µ
(µ ≈ 10−2), the deflection of the floating ice sheet in the absence of a moving load is
rather large (≈ 60 cm in the conditions of the experiments in Japan). Therefore, only
very small values of µ are of interest physically to study nonlinear effects. For larger
values of µ, the linearized theory is sufficient to describe the observed phenomena.
But for small values of µ, the weakly nonlinear results are adequate and it is not
necessary to compute solutions of the full equations, even in the presence of a moving
load.
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